Table B. Included cohort studies.

First author (year)	Country (study acronym)	Sex	Endpoint	N. Cases	Cigarette smoking								
					Status			Intensity		Duration		TSQ	
					Current	Former	Ever	Current	Ever	Current	Ever	Former	
Agudo et al. (2012) [1]	Europe (EPIC)	M/F	i	915	Х	Х	0						
Akiba & Hirayama (1990) [2]	Japan (SPCS)	M/F	m	554	Х			Х					
Akiba (1994) [3]	Japan (LSS)	M/F	i	150	Х	Х							
Arnold et al. (2009) [4]	USA (CPS II)	M/F	m	6243	Х	0	0	Χ		Х		0	
Blakely et al. (2013) [5]	New Zealand	M/F	i	1806	Х	Х	0						
Carter et al. (2015) [6]	USA (multiple cohorts)*	M/F	m	1695	Х								
Engeland et al. (1996) [7]	Norway (MS)	M/F	i	223	Х	Х	0	Х					
Fuchs et al. (1996) [8]	USA (NHS, HPFS)	M/F	i	186	Х	Х	0						
Gallicchio et al. (2006) [9]	USA	M/F	i	148	0	0	0	0					
Gapstur et al. (2000) [10]	USA (CHADPI)	M/F	m	139	0	Х	0	Х					
Hammond & Horn (1958) [11]	USA	М	m	117			Х						
Harnack et al. (1997) [12]	USA (IWHS)	F	i	66	Х	Х	0						
Heinen et al. (2010) [13]	The Netherlands (NCS)°	M/F	i	520	Х	Х	0		X		Х	0	
Isaksson et al. (2002) [14]	Sweden (STR)	M/F	i	176	Х	Х	0		X				
Jee et al. (2004) [15]	Korea (KCPS)	F	m	280	Х	Х	0						
Johansen et al. (2009) [16]	Sweden (MPP)	M/F	i	183	Χ	X	0	Х				0	
Katanoda et al. (2008) [17]	Japan*	M/F	m	-	Χ	X							
Kuzmickiene et al. (2013) [18]	Lithuania (KRIS, MIHDPS)	М	i	77	Χ	X	0	Х					
Liaw & Chen (1998) [19]	Taiwan	М	m	15	Х								
Lin et al. (2013) [20]	Japan (JACC)	M/F	m	611				Χ		Х			
Luo et al. (2007) [21]	Japan (JPHC1)	M/F	i	224	Х	Х	0						
McLaughlin et al. (1995) [22]	USA	М	m	1264	Х	Х	Χ	Χ					
Meyer et al. (2015) [23]	Switzerland*	M/F	m	127	0	Х	0	Χ					
Mills et al. (1988) [24]	USA (AHS)	M/F	m	39	Х	Х	0						

Nakamura et al. (2011) [25]	Japan (TS)	M/F	m	52	Х	Х	0	Х		Х		
Nilsen & Vatten (2000) [26]	Norway (NHSS)	M/F	i	166	Х	Х	0	Х				Х
Nilsson et al. (2001) [27]	Sweden (SSHS)	M/F	m	314	Х	Х	0	Х				
Nothlings et al. (2007) [28]	USA (MCS)	M/F	i	529	Х	Х						
Ordonez-Mena et al. (2016) [29]	Multiple countries*	M/F	i/m	2772	Х	Х	0	Х		Х		Х
Pirie et al. (2013) [30]	UK (MWS)	F	m	1891	Х							
Saito et al. (2017) [31]	Japan (multiple cohorts)*	M/F	i	1412								0
Shibata et al. (1994) [32]	USA	M/F	i	64			0					
Tulinius et al. (1997) [33]	Iceland (RS)	M/F	i	101	0	Х	0	Х				
Tverdal et al. (1993) [34]	Norway	М	m	49	0	0	0	0				
Vrieling et al. (2010) [35]	Europe (EPIC)	M/F	i	524				Х	0	Х	0	0
Yu et al. (2016) [36]	Korea	M/F	i	2195	0	Х	0	Х				
Yuan et al. (1996) [37]	China	М	i	21			Х					
Yun et al. (2006) [38]	Korea	М	i/m	863	Х	Х	0	Х		Х		
Zheng et al. (1993) [39]	USA	М	m	57	0	Х	0	Х				
Zheng et al. (2014) [40]	Asia (multiple cohorts)*	M/F	m	2007			Х					
Total (1958-2017)§				28,775	33	29	30	20	3	6	2	7

M: males; F: females; i: incidence; m: mortality; TSQ: time-since-quitting; EPIC: European Prospective Investigation into Cancer and Nutrition; SPCS: Six-Prefectures Cohort Study; LSS: Life Span Study; CPS II: Cancer Prevention Study II; MS: Migrant Study; NHS: Nurses' Health Study; HPFS: Health Professionals Follow-up Study; CHADPI: Chicago Heart Association Detection Project in Industry cohort; IWHS: Iowa Women's Health Study; NCS: Netherlands Cohort Study; STR: Swedish Twin Registry; KCPS: Korean Cancer Prevention Study; MPP: Malmo Preventive Project; KRIS: Kaunas-Rotterdam Intervention Study; MIHDPS: Multifactorial Ischemic Heart Disease Prevention Study; SMC: Swedish Mammography Cohort; COSM: Cohort of Swedish Men; JACC: Japan Collaborative Cohort Study; JPHC1: Japan Public Health Center-based Prospective Study cohort 1; AHS: Adventist Health Study; TS: Takayama Study; NHSS: National Health Screening Service; SSHS: Swedish smoking habit survey; MCS: Multiethnic Cohort Study; MWS: Million Women Study; RS: Reykjavik Study. * Pooled-analysis; Ocase-cohort study; For status, intensity, duration and TSQ, numbers represent the number of studies providing information.

REFERENCES

- 1. Agudo A, Bonet C, Travier N et al. Impact of cigarette smoking on cancer risk in the European prospective investigation into cancer and nutrition study. J Clin Oncol 2012; 30: 4550-4557.
- Akiba S, Hirayama T. Cigarette smoking and cancer mortality risk in Japanese men and womenresults from reanalysis of the six-prefecture cohort study data. Environ Health Perspect 1990; 87: 19-26
- 3. Akiba S. Analysis of cancer risk related to longitudinal information on smoking habits. Environ Health Perspect 1994; 102 Suppl 8: 15-19.
- 4. Arnold LD, Patel AV, Yan Y et al. Are racial disparities in pancreatic cancer explained by smoking and overweight/obesity? Cancer Epidemiol Biomarkers Prev 2009; 18: 2397-2405.
- 5. Blakely T, Barendregt JJ, Foster RH et al. The association of active smoking with multiple cancers: national census-cancer registry cohorts with quantitative bias analysis. Cancer Causes Control 2013; 24: 1243-1255.
- 6. Carter BD, Abnet CC, Feskanich D et al. Smoking and mortality--beyond established causes. N Engl J Med 2015; 372: 631-640.
- 7. Engeland A, Andersen A, Haldorsen T, Tretli S. Smoking habits and risk of cancers other than lung cancer: 28 years' follow-up of 26,000 Norwegian men and women. Cancer Causes Control 1996; 7: 497-506.
- 8. Fuchs CS, Colditz GA, Stampfer MJ et al. A prospective study of cigarette smoking and the risk of pancreatic cancer. Arch Intern Med 1996; 156: 2255-2260.
- 9. Gallicchio L, Kouzis A, Genkinger JM et al. Active cigarette smoking, household passive smoke exposure, and the risk of developing pancreatic cancer. Prev Med 2006; 42: 200-205.
- 10. Gapstur SM, Gann PH, Lowe W et al. Abnormal glucose metabolism and pancreatic cancer mortality. JAMA 2000; 283: 2552-2558.
- 11. Hammond EC, Horn D. Smoking and death rates: report on forty-four months of follow-up of 187,783 men. 2. Death rates by cause. J Am Med Assoc 1958; 166: 1294-1308.
- 12. Harnack LJ, Anderson KE, Zheng W et al. Smoking, alcohol, coffee, and tea intake and incidence of cancer of the exocrine pancreas: the Iowa Women's Health Study. Cancer Epidemiol Biomarkers Prev 1997; 6: 1081-1086.
- 13. Heinen MM, Verhage BA, Goldbohm RA, van den Brandt PA. Active and passive smoking and the risk of pancreatic cancer in the Netherlands Cohort Study. Cancer Epidemiol Biomarkers Prev 2010; 19: 1612-1622.
- 14. Isaksson B, Jonsson F, Pedersen NL et al. Lifestyle factors and pancreatic cancer risk: a cohort study from the Swedish Twin Registry. Int J Cancer 2002; 98: 480-482.
- 15. Jee SH, Samet JM, Ohrr H et al. Smoking and cancer risk in Korean men and women. Cancer Causes Control 2004; 15: 341-348.
- 16. Johansen D, Borgstrom A, Lindkvist B, Manjer J. Different markers of alcohol consumption, smoking and body mass index in relation to risk of pancreatic cancer. A prospective cohort study within the Malmo Preventive Project. Pancreatology 2009; 9: 677-686.
- 17. Katanoda K, Marugame T, Saika K et al. Population attributable fraction of mortality associated with tobacco smoking in Japan: a pooled analysis of three large-scale cohort studies. J Epidemiol 2008; 18: 251-264.
- 18. Kuzmickiene I, Everatt R, Virviciute D et al. Smoking and other risk factors for pancreatic cancer: a cohort study in men in Lithuania. Cancer Epidemiol 2013; 37: 133-139.

- 19. Liaw KM, Chen CJ. Mortality attributable to cigarette smoking in Taiwan: a 12-year follow-up study. Tob Control 1998; 7: 141-148.
- 20. Lin Y, Yagyu K, Ueda J et al. Active and passive smoking and risk of death from pancreatic cancer: findings from the Japan Collaborative Cohort Study. Pancreatology 2013; 13: 279-284.
- 21. Luo J, Iwasaki M, Inoue M et al. Body mass index, physical activity and the risk of pancreatic cancer in relation to smoking status and history of diabetes: a large-scale population-based cohort study in Japan--the JPHC study. Cancer Causes Control 2007; 18: 603-612.
- 22. McLaughlin JK, Hrubec Z, Blot WJ, Fraumeni JF, Jr. Smoking and cancer mortality among U.S. veterans: a 26-year follow-up. Int J Cancer 1995; 60: 190-193.
- 23. Meyer J, Rohrmann S, Bopp M, Faeh D. Impact of Smoking and Excess Body Weight on Overall and Site-Specific Cancer Mortality Risk. Cancer Epidemiol Biomarkers Prev 2015; 24: 1516-1522.
- 24. Mills PK, Beeson WL, Abbey DE et al. Dietary habits and past medical history as related to fatal pancreas cancer risk among Adventists. Cancer 1988; 61: 2578-2585.
- 25. Nakamura K, Nagata C, Wada K et al. Cigarette smoking and other lifestyle factors in relation to the risk of pancreatic cancer death: a prospective cohort study in Japan. Jpn J Clin Oncol 2011; 41: 225-231.
- 26. Nilsen TI, Vatten LJ. A prospective study of lifestyle factors and the risk of pancreatic cancer in Nord-Trondelag, Norway. Cancer Causes Control 2000; 11: 645-652.
- 27. Nilsson S, Carstensen JM, Pershagen G. Mortality among male and female smokers in Sweden: a 33 year follow up. J Epidemiol Community Health 2001; 55: 825-830.
- 28. Nothlings U, Wilkens LR, Murphy SP et al. Vegetable intake and pancreatic cancer risk: the multiethnic cohort study. Am J Epidemiol 2007; 165: 138-147.
- 29. Ordonez-Mena JM, Schottker B, Mons U et al. Quantification of the smoking-associated cancer risk with rate advancement periods: meta-analysis of individual participant data from cohorts of the CHANCES consortium. BMC Med 2016; 14: 62.
- 30. Pirie K, Peto R, Reeves GK et al. The 21st century hazards of smoking and benefits of stopping: a prospective study of one million women in the UK. Lancet 2013; 381: 133-141.
- 31. Saito E, Inoue M, Tsugane S et al. Smoking cessation and subsequent risk of cancer: A pooled analysis of eight population-based cohort studies in Japan. Cancer Epidemiol 2017; 51: 98-108.
- 32. Shibata A, Mack TM, Paganini-Hill A et al. A prospective study of pancreatic cancer in the elderly. Int J Cancer 1994; 58: 46-49.
- 33. Tulinius H, Sigfusson N, Sigvaldason H et al. Risk factors for malignant diseases: a cohort study on a population of 22,946 Icelanders. Cancer Epidemiol Biomarkers Prev 1997; 6: 863-873.
- 34. Tverdal A, Thelle D, Stensvold I et al. Mortality in relation to smoking history: 13 years' follow-up of 68,000 Norwegian men and women 35-49 years. J Clin Epidemiol 1993; 46: 475-487.
- 35. Vrieling A, Bueno-de-Mesquita HB, Boshuizen HC et al. Cigarette smoking, environmental tobacco smoke exposure and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer 2010; 126: 2394-2403.
- 36. Yu A, Woo SM, Joo J et al. Development and Validation of a Prediction Model to Estimate Individual Risk of Pancreatic Cancer. PLoS One 2016; 11: e0146473.
- 37. Yuan JM, Ross RK, Wang XL et al. Morbidity and mortality in relation to cigarette smoking in Shanghai, China. A prospective male cohort study. JAMA 1996; 275: 1646-1650.
- 38. Yun JE, Jo I, Park J et al. Cigarette smoking, elevated fasting serum glucose, and risk of pancreatic cancer in Korean men. Int J Cancer 2006; 119: 208-212.

- 39. Zheng W, McLaughlin JK, Gridley G et al. A cohort study of smoking, alcohol consumption, and dietary factors for pancreatic cancer (United States). Cancer Causes Control 1993; 4: 477-482.
- 40. Zheng W, McLerran DF, Rolland BA et al. Burden of total and cause-specific mortality related to tobacco smoking among adults aged >/= 45 years in Asia: a pooled analysis of 21 cohorts. PLoS Med 2014; 11: e1001631.